1,480 research outputs found

    Drell-Yan process at forward rapidity at the LHC

    Full text link
    We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formula due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution.Comment: 13 pages, 7 figure

    Effects of warming on the phytoplankton succession and trophic interactions

    Get PDF
    The aim of this study was to examine the impact of light and temperature on the spring phytoplankton bloom and disentangle direct and indirect effects of warming on phytoplankton. I conducted two indoor mesocosm experiments with the natural winter plankton and performed a metaanalysis on the effects of warming on primary productivity and diversity-productivity relationship. I found a general direct positive temperature effect on the carbon specific primary productivity. I observed a decline of phytoplankton standing biomass and a decline in phytoplankton size with warming, which effects were related to increased grazing pressure under higher temperature. Higher consumer activity changed community composition and dominance of phytoplankton species and increased phytoplankton diversity. I concluded that the primary productivity in marine pelagic ecosystem depends on the relative strength between direct and indirect temperature effects and on the consumer-producer interactions

    Time evolution of the reaction front in a subdiffusive system

    Full text link
    Using the quasistatic approximation, we show that in a subdiffusion--reaction system the reaction front xfx_{f} evolves in time according to the formula xftα/2x_{f} \sim t^{\alpha/2}, with α\alpha being the subdiffusion parameter. The result is derived for the system where the subdiffusion coefficients of reactants differ from each other. It includes the case of one static reactant. As an application of our results, we compare the time evolution of reaction front extracted from experimental data with the theoretical formula and we find that the transport process of organic acid particles in the tooth enamel is subdiffusive.Comment: 18 pages, 3 figure

    Constraining the double gluon distribution by the single gluon distribution

    Get PDF
    We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distribution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. We also study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violated in agreement with the sum rule.Comment: 8 pages, 2 figure

    Hyperbolic subdiffusive impedance

    Full text link
    We use the hyperbolic subdiffusion equation with fractional time derivatives (the generalized Cattaneo equation) to study the transport process of electrolytes in media where subdiffusion occurs. In this model the flux is delayed in a non-zero time with respect to the concentration gradient. In particular, we obtain the formula of electrochemical subdiffusive impedance of a spatially limited sample in the limit of large and of small pulsation of the electric field. The boundary condition at the external wall of the sample are taken in the general form as a linear combination of subdiffusive flux and concentration of the transported particles. We also discuss the influence of the equation parameters (the subdiffusion parameter and the delay time) on the Nyquist impedance plots.Comment: 10 pages, 5 figure

    Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton

    Get PDF
    We examined the simultaneous effect of climate warming and light availability on the phytoplankton spring bloom using 1400 l (1 m depth) indoor mesocosms. The timing of the spring bloom was advanced both by warming and higher light intensity, but the influence of temperature on the phytoplankton community was stronger than the light effect. Warming affected phytoplankton directly and indirectly via enhanced grazing pressure at higher temperatures. Warming resulted in markedly lower phytoplankton biomass and a shift towards smaller cell sizes. It also led to changes in the community structure of phytoplankton and zooplankton. Among phytoplankton, large-celled diatoms were most negatively affected by warming. Overwintering zooplankton species (Oithona, Pseudocalanus) remained dominant in the cold treatments, while they were replaced by late spring or summer species (Acartia, Centropages, Temora) in the warmed treatments. Our results show that understanding food web interactions might be very important to the study of the effects of climate warming on pelagic ecosystems

    Zooplankton Dominance Shift in Response to Climate-Driven Salinity Change : A Mesocosm Study

    Get PDF
    Climate change predictions indicate global changes in salinity with negative implications for plankton food webs; an important baseline for functioning of marine ecosystems. Current understanding of how salinity change will impact plankton communities is mostly limited to the salinization of freshwater environments, with little known about the effects of changing salinity in marine systems. In this study, we investigate the effect of salinity change on zooplankton communities under different salinity change scenarios of the Baltic Sea. Projections for future salinity change derived from regional physical-biogeochemical models were used to set-up an outdoor mesocosm experiment in the coastal area of the Gulf of Finland. Each mesocosm was inoculated with natural plankton using a mixture of both marine and freshwater communities, mimicking the natural influx of freshwater species from rivers into the Baltic Sea. Zooplankton diversity and composition changed possibly due to different salinity tolerances among the species. Among zooplankton, rotifers dominated in low salinities (74%) and cladocerans and copepods (69%) in high salinities. Our results suggest that the zooplankton community will shift to a rotifer dominated community in areas with declining salinity due to the intolerance of other zooplankton groups to freshening.Peer reviewe

    Experimental induction of a coastal spring bloom early in the year by intermittent high-light episodes

    Get PDF
    Through the use of mesocosm experiments, we show that an unusually early spring phytoplankton bloom can be induced by intermittent high-light periods. We performed mesocosm experiments where plankton assemblages from Kiel Bight (Western Baltic Sea) received a light regime based on the natural seasonal irradiance dimmed to 43% of surface irradiance of cloudless days, starting with irradiance levels of mid-January (6 mesocosms) and mid-February (6 mesocosms). After 6 d, half of the mesocosms received a ca. 2-fold increase in irradiance. In the January mesocosms, a phytoplankton bloom developed only in the treatments with the high-light episode, whereas in the February mesocosms a phytoplankton bloom also developed in the controls. Phytoplankton net growth rates, production:biomass ratios and biomass at the end of the high irradiance episodes were positively correlated to the daily light dose. The relative biomass of diatoms increased with increasing light, whereas the relative biomass of cryptophytes decreased. A bottom-up transmission to mesozooplankton (mainly copepods of the genera Acartia and Oithona) was evident by increased densities of copepod nauplii and egg production under higher light conditions, whereas copepodids and adults showed no responses during the experimental period. The taxonomic composition of the nauplii was shifted to the advantage of Acartia/Centropages (not distinguished at the naupliar stage) under higher light conditions

    Intraspecific Trait Variability of a Diatom and a Dinoflagellate Along a Salinity Gradient

    Get PDF
    Publisher Copyright: Copyright © 2022 Orizar and Lewandowska.The phytoplankton community is a highly diverse group of microscopic, photosynthetic organisms responsible for 50% of the global primary production. The predicted shift in ocean salinity due to climate change threatens phytoplankton, resulting in compositional shifts and changing biodiversity patterns. This study investigates intraspecific multi-trait variability and plasticity of Alexandrium ostenfeldii and Skeletonema marinoi along a salinity gradient. Multiple traits were measured for five strains of each species grown at six salinity levels (0, 5, 15, 20, 30, and 35 psu) and combined in the principal component analysis. Cell size contributed 52% to the total variation in traits composition and significantly differed between species. The trait plasticity of A. ostenfeldii was significantly higher than S. marinoi, and the highest trait plasticity was observed at 15 psu in both species. In addition to morphological traits, A. ostenfeldii was characterized by high plasticity of cellular carbon content and a higher C:P ratio at low salinity levels. Overall, the results suggest a high variation in traits plasticity between phytoplankton strains, emphasizing the importance of intraspecific diversity to maintain ecosystem functions under changing environmental conditions.Peer reviewe
    corecore